M ultivariable Calculus Common Topics List ${ }^{1}$

1. Multivariable Functions
2. 3-D space
(a) Distance
(b) Equations of planes, spheres, etc.
(c) Two-variable function graphs
(d) Sections, level curves, and contour diagrams
3. Vectors
(a) Arithmetic on vectors, graphically and by components
(b) Dot Product and projection
(c) Cross Product
4. Limits are more complicated than in the one-variable case
5. Partial Derivatives
(a) Compute using the de nition of partial derivatives
(b) Compute using di erentiation rules
(c) Approximate given a contour diagram or other info about a function
(d) Estimate signs from real-world desciption
(e) Find the tangent plane
(f) Compute higher-order partials
(g) Mixed partials are equal under certain conditions
6. Directional derivatives
(a) Estimate from contour diagram
(b) Compute using limit de nition
(c) Compute using dot product with the gradient
7. Gradient
(a) Compute the gradient
(b) Points in the direction of fast3ah51
8. Curl and Divergence
9. Chain Rule
10. Optimization
(a) Locate and classify critical points in a contour diagram
(b) Find critical points given a formula
(c) Find maxima and minima
(d) Second derivative test
(e) Extreme value theorem, including understanding of closed and bounded
(f) Lagrange multipliers
11. Integration
(a) Predict the sign of a multiple integral
(b) Compute a multiple integral
(c) Sketch region of integration
(d) Choose or change the order of integration
(e) Polar and cylindrical coordinates
12. Parametrized Curves
(a) Construct parametrizations of lines, circles, and explicitly de ned curves
(b) Velocity and speed
13. Vector Fields
(a) Sketch a vector eld with a given formula
(b) Recognize a conservative (gradient) vector edd
(c) Find a formula for a potential function of a vector edd
14. Line Integrals
(a) Given a picture of a vector edd, predict the sign of a line integral
(b) Compute a line integral using explicit parametrization formula
(c) Compute arc length of a curve
(d) For a gradient eld, compute using the fundamental theorem of line integrals
(e) For a gradient eld, computeusing a reparametrization and path independence
(f) For a gradient edd, the line integral over a loop is zero
15. Green's Theorem

Suggested Additional Topics

- Paraboloids, hyperboloids, and ellipsoids
- Spherical Coordinates
- Find plane tangent to implicit surface by viewing the surface as a leved set
- Implicit di erentiation
- J acobian formula for reparametrizing a multiple integral into a di erent coordinate system
- Surface Integrals over planes, spheres, cylinders
- Stokes's Theorem
- Divergence Theorem

Optional Topics

- Level Surfaces
- - limit proofs
- Di erentiability is more complicated than the onevariable case
- Optimization on the boundary of a region by substitution
- J acobian formula for surface integral over an arbitrary surface
- Proofs using vectors
- Signs of second partials from contour diagram
- Use limits to discuss existence of global maxima and minima
- Intersections of a curve with a surface
- Collisions and intersections of parametrized curves
- Distances involving parametrized lines
- Parametrizea complicated curveby summing parametrizations of simplecomponent motions

